

HIGH-CURRENT GENERAL PURPOSE TRANSISTOR

DESCRIPTION

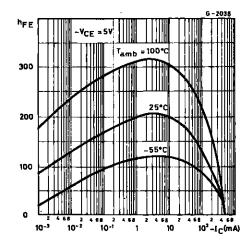
The BFX64 is a silicon planar epitaxial PNP transistor in Jedec TO-39 metal case. It is designed for digital and analog applications at current levels up to 500 mA, line driver, memory applications and in low-noise amplifiers.

ABSOLUTE MAXIMUM RATINGS

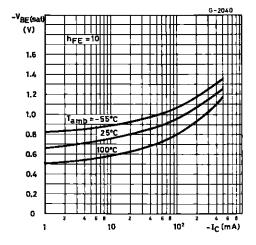
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage (I _E = 0)	- 40	V
V _{CEO}	Collector-emitter Voltage (I _B = 0)	- 40	٧
V _{EBO}	Emitter-base Voltage ($I_C = 0$)	– 5	V
Ic	Collector Current	- 500	mA
P _{tot}	Total Power Dissipation at T _{amb} ≤ 25 °C	0.7	W
	at T _{case} ≤ 25 °C	3	W
T _{stg} , T _j	Storage and Junction Temperature	- 65 to 200	°C

November 1988 1/6

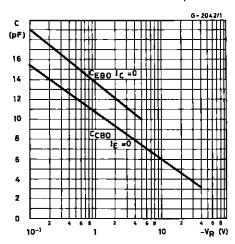
THERMAL DATA

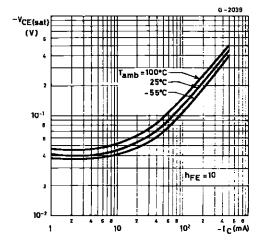

R _{th j-case}	Thermal Resistance Junction-case	Max	58	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	250	°C/W

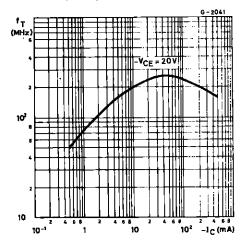
ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}C$ unless otherwise specified)

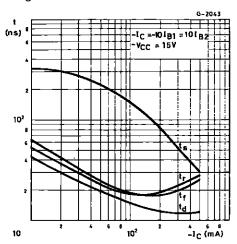

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cutoff Current (V _{BE} = 0)	V _{CE} = - 25 V				- 30	nA
$V_{(BR)CBO}$	Collector-base Breakdown Voltage (I _E = 0)	I _C = - 10 μA		- 40			V
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = - 10 mA		- 40			V
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _c = 0)	I _E = -10 μA		- 5			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_C = -150 \text{ mA}$	$I_B = -2.5 \text{ mA}$ $I_B = -15 \text{ mA}$ $I_B = -50 \text{ mA}$		- 0.08 - 0.18 - 0.6	- 0.3 - 0.5 - 1.8	>>>
V _{BE(sat)} *	Base-emitter Saturation Voltage	$I_C = -50 \text{ mA}$ $I_C = -150 \text{ mA}$ $I_C = -500 \text{ mA}$	$I_B = -2.5 \text{ mA}$ $I_B = -15 \text{ mA}$ $I_B = -50 \text{ mA}$		- 0.92 - 1	- 1.1 - 1.4 - 2.2	>>>
h _{FE}	DC Current Gain * * *	$I_{C} = -10 \text{ mA}$ $I_{C} = -50 \text{ mA}$	$\begin{split} &V_{CE} = -\ 10\ V \\ &V_{CE} = -\ 10\ V \\ &V_{CE} = -\ 10\ V \\ &V_{CE} = -\ 1\ V \\ &V_{CE} = -\ 10\ V \end{split}$	80	130 200 200 150 130		
h _{fe}	Small Signal Current Gain	I _C = - 10 mA f = 1 kHz	V _{CE} = - 10 V		200		
f⊤	Transition Frequency	I _C = - 50 mA f = 100 MHz	V _{CE} = - 20 V	200	250		MHz
C_{EBO}	Emitter-base Capacitance	I _C = 0 f = 1 MHz	V _{EB} = - 2 V		15	30	pF
ССВО	Collector-base Capacitance	I _E = 0 f = 1 MHz	V _{CB} = - 10 V		6	10	pF
NF	Noise Figure	$I_C = -30 \mu A$ $R_g = 10 k\Omega$	$V_{CE} = -5 V$ f = 1 kHz		1		dB
h _{ie}	Input Impedance	I _C = - 10 mA f = 1 kHz	V _{CE} = - 10 V		1		kΩ
h _{re}	Reverse Voltage Ratio	I _C = - 10 mA f = 1 kHz	V _{CE} = - 10 V		2.4x10 ⁻⁴		
h _{oe}	Output Admittance	I _C = - 10 mA f = 1 kHz	V _{CE} = - 10 V		110		μS
ton	Turn-on Time	$I_C = -300 \text{ mA}$ $I_{B1} = -30 \text{ mA}$	V _{CC} = - 30 V		35	50	ns
t _{off}	Turn-off Time	$I_C = -300 \text{ mA}$ $I_{B1} = -I_{B2} = -3$	V _{CC} = - 30 V 30 mA		70	120	ns

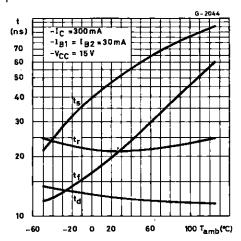
^{*} Pulsed : pulse duration = 300 μ s, duty cycle = 1 %.

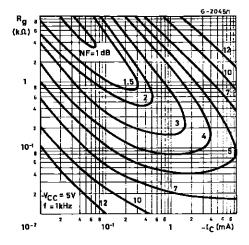

DC Current Gain.


Base-emitter Saturation Voltage.

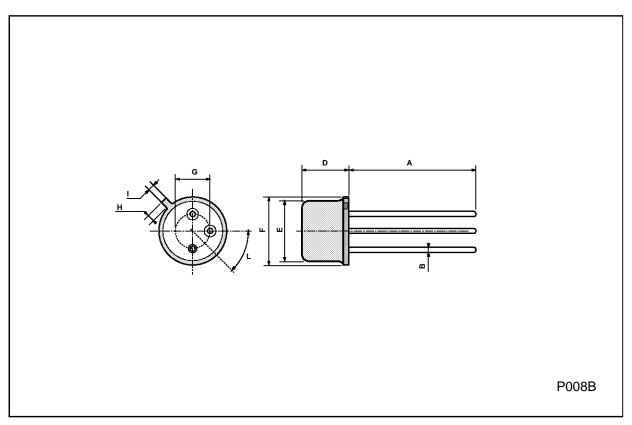

Emitter-base and Collector-base Capacitances.


Collector-emitter Saturation Voltage.


Transition Frequency.


Switching Characteristics.

Switching Characteristics vs. Ambient Temperature.



Countours of Constant Noise Figure.

TO39 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
I			0.9			0.035	
L	45° (typ.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

